(0) Obligation:
JBC Problem based on JBC Program:
Manifest-Version: 1.0
Created-By: 1.6.0_22 (Sun Microsystems Inc.)
Main-Class: TerminatorRec02
public class TerminatorRec02 {
public static void main(String[] args) {
fact(args.length);
}
public static int fact(int x) {
if (x > 1) {
int y = fact(x - 1);
return y * x;
}
return 1;
}
}
(1) JBC2FIG (SOUND transformation)
Constructed FIGraph.
(2) Obligation:
FIGraph based on JBC Program:
TerminatorRec02.main([Ljava/lang/String;)V: Graph of 15 nodes with 0 SCCs.
TerminatorRec02.fact(I)I: Graph of 27 nodes with 0 SCCs.
(3) FIGtoITRSProof (SOUND transformation)
Transformed FIGraph SCCs to IDPs. Logs:
Log for SCC 0: Generated 10 rules for P and 16 rules for R.
Combined rules. Obtained 1 rules for P and 2 rules for R.
Filtered ground terms:
26_0_fact_ConstantStackPush(x1, x2, x3) → 26_0_fact_ConstantStackPush(x2, x3)
Cond_26_0_fact_ConstantStackPush(x1, x2, x3, x4) → Cond_26_0_fact_ConstantStackPush(x1, x3, x4)
75_0_fact_Return(x1) → 75_0_fact_Return
Cond_57_1_fact_InvokeMethod1(x1, x2, x3, x4) → Cond_57_1_fact_InvokeMethod1(x1, x3, x4)
Cond_57_1_fact_InvokeMethod(x1, x2, x3, x4) → Cond_57_1_fact_InvokeMethod(x1, x3)
37_0_fact_Return(x1, x2) → 37_0_fact_Return
Filtered duplicate args:
26_0_fact_ConstantStackPush(x1, x2) → 26_0_fact_ConstantStackPush(x2)
Cond_26_0_fact_ConstantStackPush(x1, x2, x3) → Cond_26_0_fact_ConstantStackPush(x1, x3)
Filtered unneeded arguments:
Cond_57_1_fact_InvokeMethod(x1, x2) → Cond_57_1_fact_InvokeMethod(x1)
Cond_57_1_fact_InvokeMethod1(x1, x2, x3) → Cond_57_1_fact_InvokeMethod1(x1)
Combined rules. Obtained 1 rules for P and 2 rules for R.
Finished conversion. Obtained 1 rules for P and 2 rules for R. System has predefined symbols.
(4) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
57_1_fact_InvokeMethod(
37_0_fact_Return,
x1,
1) →
Cond_57_1_fact_InvokeMethod(
x1 > 1,
37_0_fact_Return,
x1,
1)
Cond_57_1_fact_InvokeMethod(
TRUE,
37_0_fact_Return,
x1,
1) →
75_0_fact_Return57_1_fact_InvokeMethod(
75_0_fact_Return,
x0,
x1) →
Cond_57_1_fact_InvokeMethod1(
x0 > 1,
75_0_fact_Return,
x0,
x1)
Cond_57_1_fact_InvokeMethod1(
TRUE,
75_0_fact_Return,
x0,
x1) →
75_0_fact_ReturnThe integer pair graph contains the following rules and edges:
(0):
26_0_FACT_CONSTANTSTACKPUSH(
x0[0]) →
COND_26_0_FACT_CONSTANTSTACKPUSH(
x0[0] > 1,
x0[0])
(1):
COND_26_0_FACT_CONSTANTSTACKPUSH(
TRUE,
x0[1]) →
26_0_FACT_CONSTANTSTACKPUSH(
x0[1] - 1)
(0) -> (1), if ((x0[0] > 1 →* TRUE)∧(x0[0] →* x0[1]))
(1) -> (0), if ((x0[1] - 1 →* x0[0]))
The set Q consists of the following terms:
57_1_fact_InvokeMethod(
37_0_fact_Return,
x0,
1)
Cond_57_1_fact_InvokeMethod(
TRUE,
37_0_fact_Return,
x0,
1)
57_1_fact_InvokeMethod(
75_0_fact_Return,
x0,
x1)
Cond_57_1_fact_InvokeMethod1(
TRUE,
75_0_fact_Return,
x0,
x1)
(5) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
26_0_FACT_CONSTANTSTACKPUSH(
x0) →
COND_26_0_FACT_CONSTANTSTACKPUSH(
>(
x0,
1),
x0) the following chains were created:
- We consider the chain 26_0_FACT_CONSTANTSTACKPUSH(x0[0]) → COND_26_0_FACT_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0]), COND_26_0_FACT_CONSTANTSTACKPUSH(TRUE, x0[1]) → 26_0_FACT_CONSTANTSTACKPUSH(-(x0[1], 1)) which results in the following constraint:
(1) (>(x0[0], 1)=TRUE∧x0[0]=x0[1] ⇒ 26_0_FACT_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧26_0_FACT_CONSTANTSTACKPUSH(x0[0])≥COND_26_0_FACT_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])∧(UIncreasing(COND_26_0_FACT_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥))
We simplified constraint (1) using rule (IV) which results in the following new constraint:
(2) (>(x0[0], 1)=TRUE ⇒ 26_0_FACT_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧26_0_FACT_CONSTANTSTACKPUSH(x0[0])≥COND_26_0_FACT_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])∧(UIncreasing(COND_26_0_FACT_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(3) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_26_0_FACT_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(4) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_26_0_FACT_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(5) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_26_0_FACT_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_26_0_FACT_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[(-1)Bound*bni_16 + (4)bni_16] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
For Pair
COND_26_0_FACT_CONSTANTSTACKPUSH(
TRUE,
x0) →
26_0_FACT_CONSTANTSTACKPUSH(
-(
x0,
1)) the following chains were created:
- We consider the chain COND_26_0_FACT_CONSTANTSTACKPUSH(TRUE, x0[1]) → 26_0_FACT_CONSTANTSTACKPUSH(-(x0[1], 1)) which results in the following constraint:
(7) (COND_26_0_FACT_CONSTANTSTACKPUSH(TRUE, x0[1])≥NonInfC∧COND_26_0_FACT_CONSTANTSTACKPUSH(TRUE, x0[1])≥26_0_FACT_CONSTANTSTACKPUSH(-(x0[1], 1))∧(UIncreasing(26_0_FACT_CONSTANTSTACKPUSH(-(x0[1], 1))), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(8) ((UIncreasing(26_0_FACT_CONSTANTSTACKPUSH(-(x0[1], 1))), ≥)∧[2 + (-1)bso_19] ≥ 0)
We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(9) ((UIncreasing(26_0_FACT_CONSTANTSTACKPUSH(-(x0[1], 1))), ≥)∧[2 + (-1)bso_19] ≥ 0)
We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(10) ((UIncreasing(26_0_FACT_CONSTANTSTACKPUSH(-(x0[1], 1))), ≥)∧[2 + (-1)bso_19] ≥ 0)
We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(11) ((UIncreasing(26_0_FACT_CONSTANTSTACKPUSH(-(x0[1], 1))), ≥)∧0 = 0∧[2 + (-1)bso_19] ≥ 0)
To summarize, we get the following constraints P
≥ for the following pairs.
- 26_0_FACT_CONSTANTSTACKPUSH(x0) → COND_26_0_FACT_CONSTANTSTACKPUSH(>(x0, 1), x0)
- (x0[0] ≥ 0 ⇒ (UIncreasing(COND_26_0_FACT_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[(-1)Bound*bni_16 + (4)bni_16] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
- COND_26_0_FACT_CONSTANTSTACKPUSH(TRUE, x0) → 26_0_FACT_CONSTANTSTACKPUSH(-(x0, 1))
- ((UIncreasing(26_0_FACT_CONSTANTSTACKPUSH(-(x0[1], 1))), ≥)∧0 = 0∧[2 + (-1)bso_19] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(TRUE) = 0
POL(FALSE) = 0
POL(57_1_fact_InvokeMethod(x1, x2, x3)) = [-1] + [-1]x2
POL(37_0_fact_Return) = [-1]
POL(1) = [1]
POL(Cond_57_1_fact_InvokeMethod(x1, x2, x3, x4)) = [-1] + [-1]x3
POL(>(x1, x2)) = [-1]
POL(75_0_fact_Return) = [-1]
POL(Cond_57_1_fact_InvokeMethod1(x1, x2, x3, x4)) = [-1] + [-1]x3
POL(26_0_FACT_CONSTANTSTACKPUSH(x1)) = [2]x1
POL(COND_26_0_FACT_CONSTANTSTACKPUSH(x1, x2)) = [2]x2
POL(-(x1, x2)) = x1 + [-1]x2
The following pairs are in P
>:
COND_26_0_FACT_CONSTANTSTACKPUSH(TRUE, x0[1]) → 26_0_FACT_CONSTANTSTACKPUSH(-(x0[1], 1))
The following pairs are in P
bound:
26_0_FACT_CONSTANTSTACKPUSH(x0[0]) → COND_26_0_FACT_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])
The following pairs are in P
≥:
26_0_FACT_CONSTANTSTACKPUSH(x0[0]) → COND_26_0_FACT_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])
There are no usable rules.
(6) Complex Obligation (AND)
(7) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
57_1_fact_InvokeMethod(
37_0_fact_Return,
x1,
1) →
Cond_57_1_fact_InvokeMethod(
x1 > 1,
37_0_fact_Return,
x1,
1)
Cond_57_1_fact_InvokeMethod(
TRUE,
37_0_fact_Return,
x1,
1) →
75_0_fact_Return57_1_fact_InvokeMethod(
75_0_fact_Return,
x0,
x1) →
Cond_57_1_fact_InvokeMethod1(
x0 > 1,
75_0_fact_Return,
x0,
x1)
Cond_57_1_fact_InvokeMethod1(
TRUE,
75_0_fact_Return,
x0,
x1) →
75_0_fact_ReturnThe integer pair graph contains the following rules and edges:
(0):
26_0_FACT_CONSTANTSTACKPUSH(
x0[0]) →
COND_26_0_FACT_CONSTANTSTACKPUSH(
x0[0] > 1,
x0[0])
The set Q consists of the following terms:
57_1_fact_InvokeMethod(
37_0_fact_Return,
x0,
1)
Cond_57_1_fact_InvokeMethod(
TRUE,
37_0_fact_Return,
x0,
1)
57_1_fact_InvokeMethod(
75_0_fact_Return,
x0,
x1)
Cond_57_1_fact_InvokeMethod1(
TRUE,
75_0_fact_Return,
x0,
x1)
(8) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(9) TRUE
(10) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
57_1_fact_InvokeMethod(
37_0_fact_Return,
x1,
1) →
Cond_57_1_fact_InvokeMethod(
x1 > 1,
37_0_fact_Return,
x1,
1)
Cond_57_1_fact_InvokeMethod(
TRUE,
37_0_fact_Return,
x1,
1) →
75_0_fact_Return57_1_fact_InvokeMethod(
75_0_fact_Return,
x0,
x1) →
Cond_57_1_fact_InvokeMethod1(
x0 > 1,
75_0_fact_Return,
x0,
x1)
Cond_57_1_fact_InvokeMethod1(
TRUE,
75_0_fact_Return,
x0,
x1) →
75_0_fact_ReturnThe integer pair graph contains the following rules and edges:
(1):
COND_26_0_FACT_CONSTANTSTACKPUSH(
TRUE,
x0[1]) →
26_0_FACT_CONSTANTSTACKPUSH(
x0[1] - 1)
The set Q consists of the following terms:
57_1_fact_InvokeMethod(
37_0_fact_Return,
x0,
1)
Cond_57_1_fact_InvokeMethod(
TRUE,
37_0_fact_Return,
x0,
1)
57_1_fact_InvokeMethod(
75_0_fact_Return,
x0,
x1)
Cond_57_1_fact_InvokeMethod1(
TRUE,
75_0_fact_Return,
x0,
x1)
(11) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(12) TRUE